Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5.
نویسنده
چکیده
This paper reports a series of 5 experiments concerned with a possible role for N-methyl-D-aspartate (NMDA) receptors in certain types of learning. The results show that chronic intraventricular infusion of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (D,L-AP5) caused an impairment of spatial but not of visual discrimination learning in rats. Such selectivity of the learning impairment occurred despite widespread distribution of the drug throughout the CNS. AP5 sometimes caused a disturbance of sensorimotor function during learning, but one experiment addressing whether this disturbance could be responsible for the spatial learning impairment established that it was statistically independent. Another experiment showed that AP5 did not affect the retention of previously acquired spatial information. These behavioral effects were all obtained with a concentration of AP5 that, in a final study, was found to be sufficient to block hippocampal long-term potentiation (LTP) in vivo without affecting normal synaptic transmission. Taken together, these observations (1) implicate NMDA receptors in certain types of learning, and (2) extend recent work showing that saturation of LTP causes an anterograde spatial amnesia (McNaughton et al., 1986). A preliminary report of parts of this work has been published (Morris et al., 1986a).
منابع مشابه
P19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کاملHippocampal synaptic plasticity and NMDA receptors: a role in information storage?
There has recently been renewed interest in the idea that alterations in synaptic efficacy may be the neural basis of information storage. Particular attention has been focused upon long-term potentiation (LTP), a long-lasting, but experimentally induced synaptic change whose physiological properties point to it being a candidate memory mechanism. However, considerations of storage capacity and...
متن کاملRepeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo
Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملP13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 9 شماره
صفحات -
تاریخ انتشار 1989